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Federated Multi-source Domain Adaptive Object Detection with Probabilistic
Teacher

1. Introduction

As surveillance devices become increasingly cheaper, cameras can now be found
nearly everywhere. To obtain a general CNN model for a specific task in artificial
intelligence, e.g., object detection, an intuitive idea is to use surveillance videos
obtained from different cameras to collaboratively train a model which may achieve
good performance on an unseen scene. However, video owners may be unwilling to
share their data due to privacy concerns as the videos may reveal personal and private
information. Meanwhile, it is difficult to obtain a decent detection model for images
under different configurations, since videos captured by different cameras correspond
to different scenes, styles and camera setups which cause large domain gaps. Currently,
this challenge problem is treated as a multi-source domain adaptation problem under a
federated setting.

To extract values from vast amount of images and videos recorded by surveillance
systems, object detection is the first step for any further applications. With the
development of deep learning, object detection has become one of the most thriving
fields in computer vision. Although domain adaptation has been widely studied for
image classification”, using it in object detection is more challenging because the
detection involves both classification and regression problems. An unsupervised
domain adaptation method was first proposed in DAF®, proposed an idea by adapting
in two different levels, image level and instance level.
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To the best of our knowledge, multi-source domain adaptive object detection
(MSDAOQD) is an emerging research problem and most related works has just been
published within the last two years®®®_ Recent works effectively utilize all of the
source data information simultaneously to train a model with better performance.
However, because of privacy preserving settings, data cannot be revealed to anyone
except the data owner. Thus, unlike MSDAOD approaches, the data owner can only
share models instead of data for collaborative training.

To resolve the foregoing problem, a federated architecture is proposed, as shown in
Fig. 1, wherein different data owners (clients) upload only their model instead of data
to the server, while the server collects and aggregates different models provided by
clients. In traditional federated learning approaches, such as FedAvg®, performance
will decrease considerably after aggregating models at the early stage of training. Thus,
exchanging model weights between server and clients for many rounds can reduce the
diversity between different models and gradually obtain a more stable and domain-
invariant global model.

Recently, many researchers have adopted teacher-student architectures for the
domain adaptation problem®®, and obtaining quality pseudo labels is critical for the
final results. For filtering false pseudo labels, an extra hyper-parameter such as
threshold may be required. In this paper, a threshold-free probabilistic teacher technique
is adopted on the client side to train a local model with labeled local data (source data)
and unlabeled target data. As clients only have unlabeled target data, this is regarded as
a self-training method, which typically relies on the pseudo labels generated by a
teacher model to update the student model. However, the pseudo label generated from
the teacher model usually contains a substantial number of errors and false positives
because of the large domain gap between the labeled source data and unlabeled target
data. We apply Weak-Strong augmentation®® to increase the variety of input images
for the student model while suppressing the false positives pseudo labels generated by
the teacher model.

We evaluate our method by using several commonly used datasets for
benchmarking object detection tasks, including Cityscapes®, KITTI® and
BDD100k®9, The experiments were conducted on multiple real-world domain
discrepancy cases, such as adapting from Cityscapes, KITTI to BDD100k. According
to the experimental results, the proposed method can maintain good performance under
the privacy preserving restriction.

Contributions of this paper include:
* A novel scenario of federated multi-source domain adaptive object detection is
stated.
» Afederated architecture leveraging probabilistic Teacher-Student Mutual Learning
and weak-strong augmentation in cross-domain object detection is proposed.
» Effectiveness of model aggregation algorithms in server site and different domain
adaptive object detectors in client sites with empirical experiments are evaluated.

2. Related Work

Unsupervised Domain Adaptive Object Detection (UDAOD). Domain
adaptation has been researched for many years and most approaches try to reduce
the domain gap by minimizing the distance between similar image features obtained
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in two different domains. The application on object detection is more challenging
than the classification problem as the latter contains both classification and
localization parts. The first work(2) applying domain adaptation on object detection
adopts both image alignment and instance alignment to diminish the domain gap.
Many domain adaptive object detection solutions(11)(12)(13) try to use adversarial
feature learning to reduce the domain gap between source and target domains.

Pseudo label based self-training(14)(15) and mean teacher training(16)(17) are
other popular types of UDAOD approach, while the former focus on how to
generate more reliable pseudo label and the latter utilize unlabeled data to improve
model generalization by progressively training a detector in a student teacher
framework. Although the number of UDAOD solutions has been growing recently,
and is still developing, most of those works train both source and target data together
as the privacy preserving issue has yet to be a major concern.

Multi-source domain adaptation (MSDA). Multi-source unsupervised domain
adaptation algorithms have been proposed with early theoretical analysis(19) along
with recent developments based on deep learning(20)(21)(22). Although more
information is obtained for adapting to the target domain, along with locally
available multiple source data, domain shifts between multiple sources (20)(21)(23)
need to be reduced whenever possible. However, some approaches cause
performance decay after adopting such methods(21)(22), while others ignore the
loss of the discriminating ability of image feature when aligning different domains.

While most MSDA works focus on image classification, DMSN(3) is the first
to introduce MSDA into object detection while MTK(4) and TRKP(5) are proposed
later. In DMSN, feature alignment among sources and pseudo subnet learning are
developed for their weighted combination. However, its temporary domain
discrepancy measurement leads to a local optimum. In MTK, a network is designed
to align features from both source-to-source and source-to-target pairs. Nevertheless,
the network scale may increase with respect to the number of source domains. In
TRKP, it proposed a framework which can collaboratively train a model with less
domain specific information and preserve more target-relevant knowledge from
different source domains. However, the above approaches require multi-domain
data in the training process, which violates a privacy protection setting.

Federated Learning. Federated learning (FL) provides a promising privacy-
preserving solution for obtaining a collaborative model across multiple clients(6),
which helps clients keep their data locally during the training process. As different
methods of model aggregation may significantly affect system performance, quite
a few approaches have been proposed, such as FedAvg(6), FedSGD(6) and
FedMA(7). In FADA(24), federated learning is first treated as a domain adaptation
problem, and tries to resolve the disentangle problem between different source
domains. In FedDG(25), a domain generalization model on medical image
segmentation is obtained by exchanging the amplitude spectra of Fourier
transformed images between different sites. Nonetheless, most of previous works
focus on image classification or segmentation, rather than object detection, because
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of the simplicity.

Recently, different methods have been developed to adopt a knowledge
distillation (KD) technique, a teacher-student architecture, for FL to reduce
communication cost(26), and to integrate more knowledge from different sites(27).
Other works employ KD only on client sites(28)(29), which do not decrease the
communication. In FD(30), only soft labels are transferred to reduce the
communication cost, but with the performance compromises. Nonetheless, these
methods are developed to apply simple classification applications that cannot
migrate directly to handle the object detection problem. To the best of our
knowledge, applying federated learning to a domain adaptive object detection
problem has never been previously mentioned.

Client 1 Server
Labeled source data Unlabeled target data
e o 5 K—s m—
‘ S —— W&.l" :
: P @o |
: - a——
—— Unlabeled target data
¥ 00 o0
Ogo 0
@Probabilistic teacher S, m «—] @ 8
Student model © © _‘EMA Teacher model® § 0 O
| (@]
Pseudo label ‘
L L :

il Lunsup SN m¢—- (mmmmeemm—————— N
1 S model !

Fig. 1 System architecture of the proposed federated scenario. The server is responsible for model
aggregation and sends a global model to clients. The clients feed both local dataset (source data) and
global data (target data) to Weak-Strong augmentation as the inputs of a Mutual Learning Teacher-
Student Framework which adopts probabilistic teacher technique on object detector. The supervised
and unsupervised losses are used to update the Student model weight while the Teacher model weight
is gradually updated by exponential moving average (EMA) technique. Clients send trained models
back to the server and this procedure repeat for R rounds.

3. Proposed Method

3.1 System Architecture and Overview

An overview of our framework is presented in Fig. 1. Our framework consists of
two roles, server and clients. The server assigns a global model to clients and aggregates
different models trained by clients, while each client applies probabilistic teacher
domain adaptive technique on local dataset to generate a local object detector. To map
our scenario to traditional unsupervised domain adaptive problem, we treat public
global data as unlabeled target data and private local data as labeled source data.

The flow of our framework can be summarized as follows: (1) The server sends
an initial global model to clients. (2) Each client independently trains a Teacher-Student
model on the private local data (source) and a public global data (target). (3) Clients
send Student models back to the server. (4) The server aggregates models from different
clients to get a new global model. (5) The server sends a new global model to clients
and repeats (2) ~ (4) for R rounds.
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3.2 Teacher-Student Mutual Learning Framework

The AP Trend of Teacher-Student Mutual
learning (round 2)

50 41.29
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Fig. 2 The AP trend of the Teacher and Student model (round 2) by using KITTI as source data to
show the process that Teacher model is gradually updated by Student Model.

On the client side, we adopted a Teacher-Student Mutual Learning Framework
which contains two models of identical architecture: Student model and Teacher model.
In each round of training, client copies global model weights to both Student and
Teacher models. The Teacher model provides pseudo-labels to update the weights of
the Student model as shown in Fig. 2. On the other hand, the Teacher model is updated
with the exponential moving average (EMA) technique. Here the Teacher model can
also be regarded as a temporal ensemble of Student models in different time steps since
it copies the weights of the Student model temporally. The EMA can be updated with:

Ol — af™' + (1 —a)0lt, (D)

where 6} and 6! denote the weights of the Teacher and Student models in the i-th
iteration, respectively, and « isthe EMA rate.

While most of previous works focused on inter-domain alignment, it is visually
proved in PT®? that intra-domain gap is the main bottleneck which restricts the
performance of UDAOD. Thus, to lower the false negatives caused by different anchor
sizes, we feed both source and target images with strong data augmentation as inputs of
the Student model. To avoid generating too many false pseudo labels, the Teacher model
adopt weak augmentation instead of strong augmentation on unlabeled target data.

For multi-source domain adaptation, assume there are N labeled source domains
and one unlabeled target domain. Suppose a source image I°, is annotated with M

bounding boxes B = {bi}?il as well as their class labels € = {cj}j,wzl. The i-th source

ns;

domain and target domain can be represented as S; = {(I].S",Bjs", st")} and T =

j=1
{(I]-T)};lil, with ng, and n; denoting the total numbers of source and target images,
respectively.

In this paper, we employ a two-stage object detector, Faster R-CNN®4), as the base
detector. The total loss of our framework can be written as:

L= Loy + Ausp['usp (2)

where L, isthe supervised loss on labeled source data, and L, isan unsupervised

loss on unlabeled target data. A5, is the hyper-parameter used to control the

weighting of the loss from target domain. The supervised loss for training the Student
8
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model can be defined as:
Lsup = Lzlp;n(BS; CSF IS) + L:E;(BSF IS: 3)
, 3
5,C% %) + L1gL (B 1°),
where RPN loss L£™P" is the loss for learning the Region Proposal Network (RPN),
which is designed to generate candidate proposals, while Region of Interest (ROI) loss
L7 is for the prediction branch of ROI head, with both RPN and ROI perform
bounding box regression (reg) and classification (cls). The original Faster R-CNN uses

L1 loss for reg and cross-entropy for cls, but we adopt binary cross-entropy loss for
both reg and cls.

3.3 Probabilistic Teacher

Pseudo label Student prediction
Bounding box Bounding box
RPN ROI RPN 4 ROI
T R Lusp—box' Lusp—box ti ’ ti
t; Sharpening
classification
— ROI S—ROI
classification LR s D
PT RPN
i S—RPN
L ['usp—cls pi

Fig. 3 The flow of computing the unsupervised loss on unlabeled target data. The Teacher model
generates pseudo labels for target data, including probability distributions of classification and
bounding box coordinates, and passes them to a sharpening function followed by a merging operation,
to guide the Student training.

Probabilistic Teacher is a threshold-free technique for object detection which maps
each set of bounding box coordinates to a single Gaussian model. Therefore, the
bounding box regression loss can be implemented by a cross-entropy function between
the ground-truth distribution and the predicted one. Moreover, using variance of
Gaussian model, rather than foreground score, to estimate loU (intersection of union)
will be more accurate. (Details of the proof can be found in PT®?)))

In Teacher-Student Mutual Learning Framework, we feed the weak augmented
unlabeled target data to the Teacher model to generate pseudo labels for optimizing the
2" term of Eq. (2), i.e., unsupervised 10ss Lys,,,,- Similar to supervised loss in Eg. (3),
unsupervised loss also consists of four training losses wherein the two cls losses can be
formulated by the following probability distribution:

RPN —
Lusp—cls -

s S (€ (ST, ), pE ),

ROI —
Lusp—cls -

1 -
wrar L H(S@f, 0, p7 "),

(4)

where p!, p; are the i-th classification probability distribution predicted by the
9
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Teacher and Student model, respectively. p; %N and p;~R°" indicate the prediction
in RPN and ROI head, with S and t being a sharpening function and a temperature
factor, respectively. In addition, H denotes the cross-entropy function and M is the
merging operation for summing up all foreground category probabilities to achieve
foreground/background probability distributions to guide the training of RPN, while
NRO" and NEEN are the batch size in ROI head and RPN, respectively.

For two reg losses, they can be formulated as:

Lusp—box
1 T (5)
mZi oH (S(t;, 1) t;),

where t!, t; are the i-th bounding box coordinate probability distributions predicted
by Teacher and Student model, respectively. ¢ is a sign function to indicate whether
the predicted bounding box is matched to the region proposal. A schematic diagram for
computing an unsupervised loss mentioned above is illustrated in Fig. 3.

3.4 Model Aggregation on Server

Algorithm 1 shows the details of FedAvg model aggregation algorithm. For every
federated round r, N clients download the same initial model My.1 from the server and
perform probabilistic teacher domain adaptation to update the model on local data. On
the client side, the training process minimize the loss L over local mini-batches b for E
iterations before the local model being sent back to the server. The server then averages
the model weights collected from all clients to get a new model weight M;. After the
model aggregation finished, this new global model will be transmitted to all clients
again. The above procedure will repeat for R rounds.

Algorithm 1 FedAvg.

Input: N source domains {S;}¥_,; a target
domain T; detectors from N sources

{M*, M2, ...,MN}; total rounds R; local
iterations E and weight control parameter

Ayusp.
Output: A well-trained model M*¢
Initialization: Server initializes and then sends
federated model Mo to N clients.
Server:
forr=1,..,Rdo

fori=1,...,N do //local computation at
clients

Adopt M,-; as initial model
M:=ClientUpdate(i, M)

N .
M, = 2 Mi
i=1

return My
ClientUpdate(i, M9"°3): //Run on client i

10
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forj=1,..,Edo

Sample mini-batch from

Si pSi ASIY'Si

{(1,5 B, G},

Compute object detection loss:

L= Lsup + Aunsup['unsup

update model M' according to loss function
return M'oca!

4. Experimental Results

4.1 Datasets

In this section, we introduce all datasets used in the experiments, including
Cityscapes®, KITTI® and BDD100k®?,
Cityscapes. The Cityscapes dataset® collects data by capturing images from outdoor
street scenes in normal weather conditions from 50 cities and include diverse scenes.
There are 2,975 images for training and 500 images for validation with dense pixel-
level labels. All of the labels are transformed to bounding box annotations.
KITTIL. The KITTI dataset® is collected by an autonomous driving platform,
containing street scenarios taken in cities, highways, and rural areas. It contains 14,999
images and 80,256 bounding boxes. Only 7,481 training images are used as source
images here.
BDD100k. The BDD100k dataset™ is a large-scale dataset containing 100,000 images,
including 70,000 training images and 10,000 validation images with bounding box
annotations. Images of the dataset are captured at different times of a day, and we assign
daytime as the target domain in cross camera adaptation.

4.2 Implementation Details

We adopted VGG16©?) as the backbone for the Faster R-CNN®* detection network,
and follow the most common setting® of UDAOD. Besides, we use the pre-trained
weights of ImageNet®¥ for the initial global model for both the Teacher and Student
models in the clients. The batch size of each dataset was set to 16 for 3 rounds of training,
while each round contains 3,000 iterations with the learning rate set to a fixed value of
0.016 during the entire training stage. The optimizer of the network is based on
Stochastic Gradient Descent (SGD) with a momentum of 0.9 and weight decay of
0.0001. The parameter « in the exponential moving average (EMA) for updating the
Teacher model was set to 0.9996, while Detectron2 is used in the implementation.
Moreover, Ayns,, Was setto 1 for the total loss computation, and 7 was set to 0.5, for
simplicity.

4.3 Comparison with Existing Approaches

In this paper, our method will be compared (in the next subsection) with previous
state-of-the-art approaches, which include:

1. Source-only setting: We apply Faster R-CNN® as base detector to train a
model on source data and directly test on target dataset without domain adaptation
technique.

2. Domain adaptation approaches: We utilize different state-of-the-art

11
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domain adaptive object detectors to adapt single source or all sources to target dataset,
which include SW®, CRDA®®, UMT!), and UBT®Y,

3. Multi-source domain adaptation (MSDA) methods: we adopt MDAN®?,
M3SDA®Y, DMSN®, and TRKP® for MSDA in object detection. As privacy issue is
not considered in these approaches, the trainer is able to collect information from all
datasets.

4.  Privacy-preserving MSDA: For a privacy-preserving setting, we simply use
different model aggregation algorithms, such as FedAvg® and FADA®* to merge
different models trained individually by single source without revealing the source
dataset on the server.

5. Oracle: We use fully labeled target images, e.g., BDD100k, to train an object
detector as an estimated upper bound.

4.4 Privacy-preserving Cross-Camera Adaptation

Datasets captured by different devices often have different camera setups and
specifications, such as angle, type, resolution and quality, etc., which cause a strong
domain shift between these image sources. By following the DMSN® setting, we use
KITTI and Cityscapes as source domains, while the daytime of BDD100Kk is treated as
a target domain. Thus, the experiment corresponding to an adaptation from small-scale
datasets to a large-scale dataset.

K+C ->BDD
APs of global models in each round and local models
in different iterations

48.09

40.15 41.38

35.88

4.08

Cityscapes-S Cityscapes-T KITTI-S KITTI-T Avg-S

Fig. 4 The trend of APs for K+C->BDD. The orange bars indicate the results of a client model using
Cityscape in local iterations while the blue bars use the KITTI dataset. The darker and lighter bars
represent the results of the Student and Teacher model, respectively. The green line gives the APs of
the global model after aggregating the client models.

Table 1 shows the experimental results evaluated on the common category, car, in
terms of the widely used average precision (AP) for Cityscapes+KITTI to BDD100k.
Whether or not adopting domain adaptation, the results of Cityscapes are much better
than those in KITTI or the source-combined cases because the data distribution between
Cityscapes and BDD100k is more similar than that between KITTI and BDDZ100K. In
addition, merely by combining the sources does not help to bridge the domain
discrepancy between different sources. In multi-source domain adaptation, TRKP®
achieves the best performance because such method not only obtains the complete
source datasets, but also restrains knowledge degradation between sources.

12
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However, under the constraint of accessibility of source data, it is difficult to
maintain the performance for data from an unseen domain. As shown in Fig. 4, the APs
of the Student model in each client before the 1% round of model aggregation are
35.88% and 40.15% for KITTI and Cityscapes, respectively. However, after the 1%
round of aggregation, the AP of the global model drop to 4.08%, which is extremely
low. Nonetheless, the APs do increase afterwards, which may be interpreted as an
indication of the diverse behaviors of the Student models at the early stage of training.
Similar performance drop also occurs in FedAvg and FADA, but the AP values can only
reach 43.3% and 43.2%, respectively, at the end, which is worse than the results of
single source domain adaptation. On the other hand, the performance of our model is
better than all other privacy preserving setting, as the AP of global model in the 3™
round can already reach to 48.1%. As the performance gap between our method and
Oracle still exists, more effective model aggregation methods are required for keeping
the domain invariant part between different models, which will be investigated in the
near future.

Table 1. Results of adaptation from Cityscapes and KITTI to BDD100k (daytime). Averate precision
(AP, %) on car category in target domain is evaluated.

Setting Source Method AP on car
FRCNN®GY 44.6
Sw 45,5
Single Source C CRDA®) 46.5
UMT®) 475
UBT®Y 48.4
FRCNN®9 28.6
Swb 29.6
Single Source K CRDA® 30.8
UmMT@n 35.4
UBT®Y 33.8
FRCNN®Y 43.2
Source-combined swe 419
DA C+K CRDA® 43.6
UMT®) 47.0
UBT®Y 47.6
MDAN®) 43.2
. M3SDA®Y 44.1
Multi-source DA C+K DMSN® 49.2
TRKP® 58.4
. . FedAvg® 43.3
Privacy-preserving C+K FADAGY 43.2

Multi-source

FedPT (Ours) 48.1
Oracle BDD100K FRCNN®Y 60.2
Oracle BDD100K FRCNN®GY 60.2

5. Conclusions

In this paper, we proposed a federated learning problem and solved it as a multi-
source domain adaptive object detection scenario which can train a global model
without disclosing the source data of data owner. On the client side, more stable pseudo
labels for the target domain are generated via Mutual Learning Teacher-Student
Framework while Weak-Strong augmentation helps in increasing more reliable intra-
domain anchors and reduces false positives. In addition, a domain adaptive object
detector, Probabilistic Teacher is adopted for achieving better performance without
extra threshold setting. Experimental results show that our approach outperforms other

13
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privacy-preserving methods. In the future, we expect to explore effectiveness of
different domain adaptation methods on client site, as well as further improvements of
model aggregation on server site.
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